Bremen

Aaa

9 4 o. CG
~ VR

Advanced Computer Graphics
Advanced Shader Programming

G. Zachmann

University of Bremen, Germany
cgvr.cs.uni-bremen.de



= Programmable vertex und fragment processors

= Expose that which was already there anyway

= Texture memory = now general storage for any data

glBegin (GL_..)

Status
Memo

glEnable, glLight, ..

O)

Host
Commands

N Pal c" k!!&l Read Back
glTexImage U | < Control

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

Keldsiq

<n

0

e



eeeee

Y

U A More Abstract Overview of the Programmable Pipeline f%

Vertices in Vertices in
C Coord.
Model C:)ord. amera. oor
[ ]
glvVertex () —> Vertex ¢ — Primitive
° Shader . Assembly

ﬁ Connectivity ﬂ
glBegin(GL_..) , glColor, .. < /
' > OpenGL State
glLight, glRotate, .. [ P Primitives
e amen ﬁa | [Eghmem 1 <=== |Rasterization

Shader

»

Fragments

Fragment/Framebuffer

) Framebuffer
Tests & Operations

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 3



W  More Versatile Texturing by Shader Programming “J%

= Declare texture in the shader (vertex or fragment):

uniform sampler2D myTex;

= Load und bind texture in OpenGL-program as always:

glBindTexture ( GL TEXTURE 2D, myTexture );
glTexImage2D(...) ;

Establish a connection between the two:

uint mytex = glGetUniformLocation( prog, "myTex" ) ;

glUniformli( mytex, 0 ); // 0 = texture unit, not ID

= Access in fragment shader:

vecd c = texture2D( myTex, gl TexCoord[0].xy )

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 4



eeeeee

Example: A Simple "Gloss" Texture

= |dea: expand the conventional Phong lighting by introducing a
specular reflection coefficient that is mapped from a texture on the

surface

Iowt = (rg cos @ + r,cos? ©)-I;,

re = rs(u, v)

demos/shader/vorlesung demos/gloss. {frag,vert}

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

<N

1)



eeeee

.

Procedural Textures Using Shader Programming %

= Goal:
Brick texture

= Simplification &

parameters:

_______ T =
| |
| |

|
BrickStepSize.x

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 6



eeeee

" General mechanics:

= Vertex shader: normal lighting calculation

= Fragment shader:

- For each fragment, determine if the point lies in the brick or in the mortar on the
basis of the x/y coordinates of the corresponding point in the object’s space

- After that, multiply the corresponding color with intensity from lighting model

= First 3 steps towards a complete shader program:

vorlesung_demos/brick.vert and brick[1-3].frag

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

cG
VR



e

Noise K i

VR =

= Most procedural textures look too "clean"
= |dea: add all sorts of noise

= Dirt, grime, random irreqularities, etc., for a more realistic appearance
= |deal qualities of a noise function:

= At least C2-continuous

= |t’s sufficient if it looks random

= No obvious patterns or repetitions

= Repeatable (same output with the same input)

= Convenient domain, e.g. [-1,1]

= Can be defined for 1-4 dimensions

= |sotropic (invariant under rotation)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 8



= Simple idea, demonstrated by a 1-dimensional example:

1. Choose random y-values from [-1,1] at the integer points:

2. Interpolate in between, e.qg. cubically (linearly isn’t sufficient):

‘I —_

= This kind of noise function is called "value noise”

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 9



3. Generate multiple noise functions with different frequencies:

frequency =4
amplitude=1.0

frequency =8
amplitude = 0.5

frequency = 16
amplitude = 0.25

frequency = 32
amplitude = 0.125

frequency = 64
amplitude = 0.0625

4. Add all of these together

- Produces noise at different "scales"

G. Zachmann

Advanced Computer Graphics SS

May 2013

sum of 2 octaves

sum of 3 octaves

sum of 4 octaves

sum of 5 octaves

Advanced Shader Techniques

¥ co
VR =

10



= The same thing in 2D:

Result

= Easily allows itself to be generalized
into higher dimensions

= Also called Perlin noise, pink noise, or
fractal noise

= Ken Perlin first dealt with this during his
work on TRON

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 11



